ECE 259A: Midterm Exam

Instructions: There are four problems, weighted as shown below. The exam is open book and open notes: you may use any auxiliary material that you like as long as it is on paper.

Good luck!

Problem 1. (25 points)
Let \mathbb{C} be the binary linear code of length $n=10$, generated by the following matrix

$$
G=\left[\begin{array}{llllllllll}
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0
\end{array}\right]
$$

a. Express G in systematic form, and compute a parity-check matrix for this code.
b. What is the minimum distance of \mathbb{C}^{\perp}, the dual code of \mathbb{C} ?
c. Compute the syndrome of the vector $\underline{y}=(1,0,1,1,0,0,1,1,0,0)$ with respect to the paritycheck matrix found in part (a).
d. If the vector $\underline{y}=(1,0,1,1,0,0,1,1,0,0)$ from part (c) is observed at the output of a binary symmetric channel, what is the most likely transmitted codeword of \mathbb{C} ?
Hint: Compare the syndrome from part (c) with the columns of the parity-check matrix.

Problem 2. (20 points)
A binary code \mathbb{C} is said to be doubly-even if the weight of all the codewords of \mathbb{C} is divisible by 4 . Suppose that a binary linear code \mathbb{C} and its dual \mathbb{C}^{\perp} are both doubly-even. Prove that $\mathbb{C}=\mathbb{C}^{\perp}$.

Problem 3. (25 points)
Let \mathcal{E} be an arbitrary subset of \mathbb{F}_{2}^{n} of cardinality $|\mathcal{E}|=M$, such that $\underline{0} \in \mathcal{E}$. We say that a code $\mathbb{C} \subset \mathbb{F}_{2}^{n}$ detects all error patterns in the set \mathcal{E} if $\underline{c}_{1}+\underline{e} \neq \underline{c}_{2}$ for all $\underline{e} \in \mathcal{E}$ and for all distinct $\underline{c}_{1}, \underline{c}_{2} \in \mathbb{C}$ (or, equivalently, if $(\underline{c}+\mathcal{E}) \cap \mathbb{C}=\{\underline{c}\}$ for all $\underline{c} \in \mathbb{C}$).
Show that there exist codes of cardinality $|\mathbb{C}| \geqslant 2^{n} / M$ that detect all error patterns in the set \mathcal{E}.

Problem 4. (30 points)
Let \mathbb{C} be an (n, k, d) linear code over the field $\operatorname{GF}(q)=\left\{0, \alpha^{0}, \alpha^{1}, \ldots, \alpha^{q-2}\right\}$, where $q \geqslant 3$. It is known that \mathbb{C} is at the same time an MDS code and a non-trivial perfect code.
a. What are the parameters n, k, d of $\mathbb{C}($ in terms of $q)$?
b. Write down a parity-check matrix for \mathbb{C}.

Hint: Use the fact that the only non-trivial perfect linear codes over a field are the binary Golay code over $\operatorname{GF}(2)$, the ternary Golay code over $\mathrm{GF}(3)$, and the Hamming codes over $\mathrm{GF}(q)$ for all q.

