ECE 259A: Midterm Exam

Instructions: There are four problems, weighted as shown below. The exam is open book and open notes: you may use any auxiliary material that you like as long as it is on paper.

Good luck!

Problem 1. (25 points)

Let \mathbb{C} be the binary linear code of length n=10, generated by the following matrix

$$G = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}$$

- **a.** Express G in systematic form, and compute a parity-check matrix for this code.
- **b.** What is the minimum distance of \mathbb{C}^{\perp} , the dual code of \mathbb{C} ?
- **c.** Compute the syndrome of the vector $\underline{y} = (1,0,1,1,0,0,1,1,0,0)$ with respect to the parity-check matrix found in part (a).
- **d.** If the vector $\underline{y} = (1,0,1,1,0,0,1,1,0,0)$ from part (c) is observed at the output of a binary symmetric channel, what is the most likely transmitted codeword of \mathbb{C} ?

Hint: Compare the syndrome from part (c) with the columns of the parity-check matrix.

Problem 2. (20 points)

A binary code $\mathbb C$ is said to be *doubly-even* if the weight of all the codewords of $\mathbb C$ is divisible by 4. Suppose that a binary linear code $\mathbb C$ and its dual $\mathbb C^\perp$ are both doubly-even. Prove that $\mathbb C = \mathbb C^\perp$.

Problem 3. (25 points)

Let \mathcal{E} be an arbitrary subset of \mathbb{F}_2^n of cardinality $|\mathcal{E}| = M$, such that $\underline{0} \in \mathcal{E}$. We say that a code $\mathbb{C} \subset \mathbb{F}_2^n$ detects all error patterns in the set \mathcal{E} if $\underline{c}_1 + \underline{e} \neq \underline{c}_2$ for all $\underline{e} \in \mathcal{E}$ and for all distinct $\underline{c}_1, \underline{c}_2 \in \mathbb{C}$ (or, equivalently, if $(\underline{c} + \mathcal{E}) \cap \mathbb{C} = \{\underline{c}\}$ for all $\underline{c} \in \mathbb{C}$).

Show that there exist codes of cardinality $|\mathbb{C}| \ge 2^n/M$ that detect all error patterns in the set \mathcal{E} .

Problem 4. (30 points)

Let \mathbb{C} be an (n, k, d) linear code over the field $GF(q) = \{0, \alpha^0, \alpha^1, \dots, \alpha^{q-2}\}$, where $q \ge 3$. It is known that \mathbb{C} is at the same time an MDS code and a non-trivial perfect code.

- **a.** What are the parameters n, k, d of \mathbb{C} (in terms of q)?
- **b.** Write down a parity-check matrix for \mathbb{C} .

Hint: Use the fact that the only non-trivial perfect linear codes over a field are the binary Golay code over GF(2), the ternary Golay code over GF(3), and the Hamming codes over GF(q) for all q.