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ECE 259A: Solutions to the Midterm Exam

Problem 1.
a. We first use elementary row operations to put the generator matrix of C in systematic form:
1000011110
0100101101
Al = 0010110100
0001111000
The parity-check matrix can then be found as H = [ — A’ | I'], which in this case gives:

(011110000 0]

1011010000

H - 1101001000

/1110000100

100000O0O0T1O0
| 01T 000O0O0O0O0 1|

b. Since H contains rows of weight 2, it is easy to see that the minimum distance of C is 2.
c. Straightforward computation shows that the syndrome of y is Hy' = (0,1,1,1,1,0)".

d. On a binary symmetric channel, the most likely transmitted codeword is the one closest to v in
the Hamming metric. Since the syndrome of ¥ is non-zero, it is not, itself, a codeword. “On
the other hand, we observe that the syndrome of y is precisely the first column of H. Hence
complementing the first bit in y produces the codeword x = (0,0,1,1,0,0,1,1,0,0) at distance
1 from y. This codeword is the most likely.

Problem 2.

Let x;, x, be two arbitrary, not necessarily distinct, codewords of C. We have
wi(x +x5) = wt(xg) +wt(xy) —2wt(x; A xp) ()

where x; A x, is the vector that has 1’s at those positions where both x; and x, have 1’s. Note that
X1 - Xy = wt(xq A xy) mod 2, so that x; and x, are orthogonal to each other if and only if wt(x; A x,)
is even. Since x; + x, € C by linearity and C is doubly-even, it follows that both sides of (x) are
divisible by 4. Thus 4 divides 2wt(x; A x,), which implies that wt(x; A x,) is even.

Hence every codeword of C is orthogonal to all the codewords of C, which means that C C C. Since
C+ is also doubly-even, the same argument shows that C* C (C*)* = C. Having established that
C C Ct and C* C C, we can conclude that C = C*.



Problem 3.

This is a generalization of the Gilbert bound from Problem Set#2. Define S(x) = x+ & = {x +¢:
e € E}. Then, for any C C [}, we have

def Laery [S(X)NCl M|C|

2n 2n

Indeed, count in two ways the number 2" N of codewords of C contained in the sets S(x), where x
runs through all the points in IF}'. The obvious way is the definition of V. On the other hand, every
codeword of ¢ € C lies in exactly |£| = M such sets S(x), corresponding to all x € (¢ + £). Thus
every codeword is counted exactly M times in ), cpy [S(x) NC| = MI|C].

Now, given a code C that detects all error patterns in £, we may assume that A/ > 1. Otherwise there
is at least one point x € [E}', such that (x + &) NC = &. We could then adjoin x to C to obtain a larger
code that corrects all error patterns in £. This process can be iterated until we obtain a code such that
N = M|C|/2" > 1, or equivalently |C| > 2"/ M.

Problem 4.

a. Since neither of the two Golay codes is MDS, C is necessarily a Hamming code H,, and hence
d = 3. Since the code is MDS, we have k = n —d + 1 = n — 2. Since the code is perfect and
t=1[(d—1)/2] =1, we have

1+(q—1)<’11> =gt =7

which implies n = (g>°—1)/(q—1) =g+ 1. Thus,n =g+ 1,k =g —1,and d = 3.

b. To write down a parity-check matrix of the Hamming code H» over GF(g), we need n = g+1
2-tuples over GF(g) such that no two of them are linearly dependent over GF(g). One way to do

this is as follows
o1 1 1 --- 1

Hy = {1 0 a0 ol ... p12



