ECE 259A: Solutions to the Midterm Exam

Problem 1.

a. We first use elementary row operations to put the generator matrix of \mathbb{C} in systematic form:

$$\begin{bmatrix} I \mid A \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}$$

The parity-check matrix can then be found as $H = [-A^t | I]$, which in this case gives:

$$H = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

- **b.** Since *H* contains rows of weight 2, it is easy to see that the minimum distance of \mathbb{C}^{\perp} is 2.
- **c.** Straightforward computation shows that the syndrome of \underline{y} is $H\underline{y}^t = (0, 1, 1, 1, 1, 0)^t$.
- **d.** On a binary symmetric channel, the most likely transmitted codeword is the one closest to \underline{y} in the Hamming metric. Since the syndrome of \underline{y} is non-zero, it is not, itself, a codeword. On the other hand, we observe that the syndrome of \underline{y} is precisely the first column of H. Hence complementing the first bit in \underline{y} produces the codeword $\underline{x} = (0,0,1,1,0,0,1,1,0,0)$ at distance 1 from \underline{y} . This codeword is the most likely.

Problem 2.

Let $\underline{x}_1,\underline{x}_2$ be two arbitrary, not necessarily distinct, codewords of \mathbb{C} . We have

$$wt(x_1 + x_2) = wt(x_1) + wt(x_2) - 2wt(x_1 \wedge x_2) \tag{*}$$

where $\underline{x}_1 \wedge \underline{x}_2$ is the vector that has 1's at those positions where both \underline{x}_1 and \underline{x}_2 have 1's. Note that $\underline{x}_1 \cdot \underline{x}_2 = \text{wt}(\underline{x}_1 \wedge \underline{x}_2) \mod 2$, so that \underline{x}_1 and \underline{x}_2 are orthogonal to each other if and only if $\text{wt}(\underline{x}_1 \wedge \underline{x}_2)$ is even. Since $\underline{x}_1 + \underline{x}_2 \in \mathbb{C}$ by linearity and \mathbb{C} is doubly-even, it follows that both sides of (*) are divisible by 4. Thus 4 divides $2\text{wt}(\underline{x}_1 \wedge \underline{x}_2)$, which implies that $\text{wt}(\underline{x}_1 \wedge \underline{x}_2)$ is even.

Hence every codeword of $\mathbb C$ is orthogonal to all the codewords of $\mathbb C$, which means that $\mathbb C \subseteq \mathbb C^{\perp}$. Since $\mathbb C^{\perp}$ is also doubly-even, the same argument shows that $\mathbb C^{\perp} \subseteq (\mathbb C^{\perp})^{\perp} = \mathbb C$. Having established that $\mathbb C \subseteq \mathbb C^{\perp}$ and $\mathbb C^{\perp} \subseteq \mathbb C$, we can conclude that $\mathbb C = \mathbb C^{\perp}$.

Problem 3.

This is a generalization of the Gilbert bound from Problem Set #2. Define $\mathcal{S}(\underline{x}) = \underline{x} + \mathcal{E} = \{\underline{x} + \underline{e} : \underline{e} \in \mathcal{E}\}$. Then, for any $\mathbb{C} \subset \mathbb{F}_2^n$, we have

$$\mathcal{N} \stackrel{\mathrm{def}}{=} \frac{\sum_{\underline{x} \in \mathbb{F}_2^n} |\mathcal{S}(\underline{x}) \cap \mathbb{C}|}{2^n} = \frac{M |\mathbb{C}|}{2^n}$$

Indeed, count in two ways the number $2^n\mathcal{N}$ of codewords of \mathbb{C} contained in the sets $\mathcal{S}(\underline{x})$, where \underline{x} runs through all the points in \mathbb{F}_2^n . The obvious way is the definition of \mathcal{N} . On the other hand, every codeword of $\underline{c} \in \mathbb{C}$ lies in exactly $|\mathcal{E}| = M$ such sets $\mathcal{S}(\underline{x})$, corresponding to all $\underline{x} \in (\underline{c} + \mathcal{E})$. Thus every codeword is counted exactly M times in $\sum_{\underline{x} \in \mathbb{F}_2^n} |\mathcal{S}(\underline{x}) \cap \mathbb{C}| = M|\mathbb{C}|$.

Now, given a code $\mathbb C$ that detects all error patterns in $\mathcal E$, we may assume that $\mathcal N\geqslant 1$. Otherwise there is at least one point $\underline x\in\mathbb F_2^n$, such that $(\underline x+\mathcal E)\cap\mathbb C=\varnothing$. We could then adjoin $\underline x$ to $\mathbb C$ to obtain a larger code that corrects all error patterns in $\mathcal E$. This process can be iterated until we obtain a code such that $\mathcal N=M|\mathbb C|/2^n\geqslant 1$, or equivalently $|\mathbb C|\geqslant 2^n/M$.

Problem 4.

a. Since neither of the two Golay codes is MDS, $\mathbb C$ is necessarily a Hamming code $\mathcal H_m$ and hence d=3. Since the code is MDS, we have k=n-d+1=n-2. Since the code is perfect and $t=\lfloor (d-1)/2 \rfloor=1$, we have

$$1 + (q-1)\binom{n}{1} = q^{n-k} = q^2$$

which implies $n = (q^2-1)/(q-1) = q+1$. Thus, n = q+1, k = q-1, and d = 3.

b. To write down a parity-check matrix of the Hamming code \mathcal{H}_2 over GF(q), we need n=q+1 2-tuples over GF(q) such that no two of them are linearly dependent over GF(q). One way to do this is as follows

$$H_2 = \left[\begin{array}{ccccc} 0 & 1 & 1 & 1 & \cdots & 1 \\ 1 & 0 & \alpha^0 & \alpha^1 & \cdots & \alpha^{q-2} \end{array} \right]$$