ECE 259A: Solutions to the Midterm Exam

Problem 1.

a. We first use elementary row operations to put the generator matrix of \mathbb{C} in systematic form:

$$
[I \mid A]=\left[\begin{array}{llllllllll}
1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0
\end{array}\right]
$$

The parity-check matrix can then be found as $H=\left[-A^{t} \mid I\right]$, which in this case gives:

$$
H=\left[\begin{array}{llllllllll}
0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

b. Since H contains rows of weight 2 , it is easy to see that the minimum distance of \mathbb{C}^{\perp} is 2 .
c. Straightforward computation shows that the syndrome of \underline{y} is $H \underline{y}^{t}=(0,1,1,1,1,0)^{t}$.
d. On a binary symmetric channel, the most likely transmitted codeword is the one closest to y in the Hamming metric. Since the syndrome of \underline{y} is non-zero, it is not, itself, a codeword. On the other hand, we observe that the syndrome of y is precisely the first column of H. Hence complementing the first bit in \underline{y} produces the codeword $\underline{x}=(0,0,1,1,0,0,1,1,0,0)$ at distance 1 from \underline{y}. This codeword is the most likely.

Problem 2.

Let $\underline{x}_{1}, \underline{x}_{2}$ be two arbitrary, not necessarily distinct, codewords of \mathbb{C}. We have

$$
\begin{equation*}
\mathrm{wt}\left(\underline{x}_{1}+\underline{x}_{2}\right)=\mathrm{wt}\left(\underline{x}_{1}\right)+\mathrm{wt}\left(\underline{x}_{2}\right)-2 \mathrm{wt}\left(\underline{x}_{1} \wedge \underline{x}_{2}\right) \tag{*}
\end{equation*}
$$

where $\underline{x}_{1} \wedge \underline{x}_{2}$ is the vector that has 1 's at those positions where both \underline{x}_{1} and \underline{x}_{2} have 1 's. Note that $\underline{x}_{1} \cdot \underline{x}_{2}=\mathrm{wt}\left(\underline{x}_{1} \wedge \underline{x}_{2}\right) \bmod 2$, so that \underline{x}_{1} and \underline{x}_{2} are orthogonal to each other if and only if $\mathrm{wt}\left(\underline{x}_{1} \wedge \underline{x}_{2}\right)$ is even. Since $\underline{x}_{1}+\underline{x}_{2} \in \mathbb{C}$ by linearity and \mathbb{C} is doubly-even, it follows that both sides of $(*)$ are divisible by 4 . Thus 4 divides $2 \mathrm{wt}\left(\underline{x}_{1} \wedge \underline{x}_{2}\right)$, which implies that $\mathrm{wt}\left(\underline{x}_{1} \wedge \underline{x}_{2}\right)$ is even.
Hence every codeword of \mathbb{C} is orthogonal to all the codewords of \mathbb{C}, which means that $\mathbb{C} \subseteq \mathbb{C}^{\perp}$. Since \mathbb{C}^{\perp} is also doubly-even, the same argument shows that $\mathbb{C}^{\perp} \subseteq\left(\mathbb{C}^{\perp}\right)^{\perp}=\mathbb{C}$. Having established that $\mathbb{C} \subseteq \mathbb{C}^{\perp}$ and $\mathbb{C}^{\perp} \subseteq \mathbb{C}$, we can conclude that $\mathbb{C}=\mathbb{C}^{\perp}$.

Problem 3.

This is a generalization of the Gilbert bound from Problem Set\#2. Define $\mathcal{S}(\underline{x})=\underline{x}+\mathcal{E}=\{\underline{x}+\underline{e}$: $\underline{e} \in \mathcal{E}\}$. Then, for any $\mathbb{C} \subset \mathbb{F}_{2}^{n}$, we have

$$
\mathcal{N} \stackrel{\text { def }}{=} \frac{\sum_{\underline{x} \in \mathbb{F}_{2}^{n}}|\mathcal{S}(\underline{x}) \cap \mathbb{C}|}{2^{n}}=\frac{M|\mathbb{C}|}{2^{n}}
$$

Indeed, count in two ways the number $2^{n} \mathcal{N}$ of codewords of \mathbb{C} contained in the sets $\mathcal{S}(\underline{x})$, where \underline{x} runs through all the points in \mathbb{F}_{2}^{n}. The obvious way is the definition of \mathcal{N}. On the other hand, every codeword of $\underline{c} \in \mathbb{C}$ lies in exactly $|\mathcal{E}|=M$ such sets $\mathcal{S}(\underline{x})$, corresponding to all $\underline{x} \in(\underline{c}+\mathcal{E})$. Thus every codeword is counted exactly M times in $\sum_{\underline{x} \in \mathbb{F}_{2}^{n}}|\mathcal{S}(\underline{x}) \cap \mathbb{C}|=M|\mathbb{C}|$.
Now, given a code \mathbb{C} that detects all error patterns in \mathcal{E}, we may assume that $\mathcal{N} \geqslant 1$. Otherwise there is at least one point $\underline{x} \in \mathbb{F}_{2}^{n}$, such that $(\underline{x}+\mathcal{E}) \cap \mathbb{C}=\varnothing$. We could then adjoin \underline{x} to \mathbb{C} to obtain a larger code that corrects all error patterns in \mathcal{E}. This process can be iterated until we obtain a code such that $\mathcal{N}=M|\mathbb{C}| / 2^{n} \geqslant 1$, or equivalently $|\mathbb{C}| \geqslant 2^{n} / M$.

Problem 4.

a. Since neither of the two Golay codes is MDS, \mathbb{C} is necessarily a Hamming code \mathcal{H}_{m} and hence $d=3$. Since the code is MDS, we have $k=n-d+1=n-2$. Since the code is perfect and $t=\lfloor(d-1) / 2\rfloor=1$, we have

$$
1+(q-1)\binom{n}{1}=q^{n-k}=q^{2}
$$

which implies $n=\left(q^{2}-1\right) /(q-1)=q+1$. Thus, $n=q+1, k=q-1$, and $d=3$.
b. To write down a parity-check matrix of the Hamming code \mathcal{H}_{2} over GF (q), we need $n=q+1$ 2-tuples over GF (q) such that no two of them are linearly dependent over $G F(q)$. One way to do this is as follows

$$
H_{2}=\left[\begin{array}{cccccc}
0 & 1 & 1 & 1 & \cdots & 1 \\
1 & 0 & \alpha^{0} & \alpha^{1} & \cdots & \alpha^{q-2}
\end{array}\right]
$$

